

K-BAND HIGH POWER SINGLE-TUNED IMPATT OSCILLATOR STABILIZED BY HYBRID-COUPLED CAVITIES

H. Komizo, T. Meguro, Y. Ito, and M. Shinoda
FUJITSU Laboratories Ltd., Kawasaki, Japan

Abstract

Highly stable 0.7W CW K-band IMPATT power source with frequency stability of about 4×10^{-5} over 50°C has been developed. This has been achieved by a combination of a single-tuned oscillator stabilized by hybrid-coupled cavities and one stage high power reflection type amplifier.

Introduction

In this paper, a new cavity stabilizing technique applied to a K-band IMPATT oscillator is proposed which utilizes a compact magnetic T and TE_{011} cavities. Also, are described the design of a high power IMPATT reflection type amplifier and over-all performance of the highly stable IMPATT power source, shown in Fig.1.

Cavity Stabilized Oscillator

Reflection type cavity stabilizing method without a passivating circuit to obtain a highly stable and low noise Gunn or IMPATT diode oscillator was reported at X-band.¹ But, in the frequency region beyond K-band, the parasitic elements of the diode package greatly influence to the circuit impedance and it becomes rather difficult to get a reproducible and tunable stabilized oscillator by such a stabilizing method. Recently, K. Kohiyama² proposed a band rejection filter type method that enabled to get a single-tuned (i.e. free from mode-jumping) oscillation.

A hybrid-coupled cavities construction is known as a part of a microwave discriminating circuit that has a high Q_{ex} , high frequency sensitivity and also roughly single-tuned admittance locus.

The proposed solid-state oscillator stabilized by the hybrid-coupled cavities provided a single-mode oscillation without mode-jumping and a broadband mechanical tunability.

Figure 2 shows the cross sectional view of the IMPATT oscillator stabilized by hybrid coupled cavities. Two TE_{011} mode high Q cavities with the resonant frequencies of f_{01} and f_{02} , are connected to the both arms of H plane T-junction of a magic T through coupling apertures. The coaxial arm is terminated with a Epo-iron absorber 1.

A reduced height pill-type packaged Si IMPATT diode is mounted in the coaxial line which is extended from the RG-42 waveguide. At the other side of the coaxial line, is provided the stabilizing circuit³ which consists of a radial filter and an Epo-iron absorber 2.

Figure 3(a) shows a simplified equivalent circuit of the oscillator. The difference $l_1 \sim l_2$ is chosen nearly $(2n-1)\lambda_g/4$, where λ_g is the wavelength of the center frequency f_0 , $f_0 = (f_{01} + f_{02})/2$. The input admittance locus, looking from the reference point A, becomes like that of a staggered band rejection filter and at the out of band frequencies, the input impedance is pure resistive due to the absorber 1. The length l_3 (the distance from point A to the diode) is so chosen as to satisfy the oscillating condition.

Figure 3(b) shows the admittance loci looking from point B, in this case, $f_{01} > f_{02}$ and $l_1 = \lambda_g/8$, $l_2 = \lambda_g/8 + \lambda_g/4$, and $l_3 = \lambda_g/3 + n \cdot \lambda_g/2$.

The Q_{ex} at the center frequency f_0 and the bandwidth of the band rejection filter is a function of the Q_{ex} of each cavity and the frequency difference $\Delta f (=f_{01} - f_{02})$. Admittance locus varies from curve a to curve b in Fig.3(b), according to the increase of Δf . The Q_{ex} at f_0 also gradually decreases and there exist a critical value in Δf which gives a highest Q_{ex} value at a given unloaded Q and Q_{ex} values of the cavities. So, it is better to set the cavity frequencies to the critical point in Δf to get a most stabilized oscillator.

The absorber 2 with the radial choke plays an important role to restrain spurious oscillation in the out-of-band. The coaxial post diameter d^* mainly determined the coupling between the diode and the waveguide circuit.

Figure 4 shows the typical characteristics of the stabilized IMPATT oscillator. The Si IMPATT diode for the oscillator and the amplifier has about 10^{-4} cm^2 junction area, thermal resistance of below $16^{\circ}\text{C}/\text{W}$, a breakdown voltage of 38 V, and avalanche frequency of about 13 GHz at the operating current $I_{\text{op}} = 200 \text{ mA}$. The diode is soldered to a copper block for good heat-sinking of about $2.5^{\circ}\text{C}/\text{W}$ thermal resistance.

The stabilized output power of more than 350 mW with a pushing figure of 15 KHz/mA and efficiency of 3.2%, were obtained at an operating junction temperature of 230°C . In this experiment, the parameters of the hybrid-coupled cavities are as follow; the cavity Q_0 and Q_{ex} are about 15000 and 5000, respectively, and $f_0 = 25.353 \text{ GHz}$, $\Delta f \sim 3 \text{ MHz}$.

The frequency stability of about 4×10^{-5} over 50°C has been obtained using the temperature compensated INVAR cavities and simple protection from humidity.

Reflection Type Amplifier

Almost same mount construction as the oscillator is used for the amplifier, except for the hybrid-coupled cavities replaced by a short-plunger. The l_4 was changed to get an optimum coupling to a circulator.

To obtain the maximum output power P_{om} of the amplifier, the optimum load conductance G_{lm} can be decided from the relation between the electronic conductance G_d and RF device voltage V_{ac} , $G_d = G_0 - kV_{\text{ac}}^4$ at a given input power level, where G_0 and k denote the small signal negative conductance and $-\partial G_d / \partial V_{\text{ac}}$, respectively. G_0 and k can be derived from the several measured G_d values corresponding to the input power P_i and the gain.

⁵ Output power P_o of an amplifier is the sum of the P_i and the generated power P_d from the device. G_{lm} for the P_{om} can be determined by calculation under a given P_i .

Furthermore instability phenomena observed under large signal condition were eliminated

by the above mentioned stabilized circuit with (3) absorber 2.

Figure 5 shows the linearity characteristics of the amplifier which is designed to provide a maximum output power at input level of 25.5 dBm with operating current 230 mA.

The amplifier provided the small signal gain of 5 dB, maximum output power of more than 1 W with 1.5 dB gain and maximum generated power about 25.6 dBm. At P_i of 25.5 dBm, the 1 dB bandwidth is about 2.5 GHz with a gain of 3 dB, and the gain variation due to the ambient temperature variation from 0°C to 50°C is about 0.2 dB.

Figure 6 shows the overall performance and block diagram of the 25 GHz band power source using the stabilized IMPATT oscillator and one stage amplifier. The output power of more than 0.5 W (typical 0.7 W at room temperature) is available with the frequency stability of about 4×10^{-5} at 0~50°C.

Conclusion

A new cavity stabilizing method is proposed which utilizes the hybrid-coupled cavities, well-known construction as a part of a microwave discriminator.

The K-band IMPATT power source using the stabilizing method is suitable for a stable and reliable local oscillator for mm wave PCM system, followed by a frequency multiplier, and also for a pumping source of a parametric amplifier.

Reference

- (1) Y. Ito, H. Komizo and S. Sasagawa, "Cavity Stabilized X-band Gunn oscillator", IEEE Trans. Microwave Theory Tech. vol. MTT-18, pp. 890-897, November 1970.
- (2) K. Kohiyama and K. Monma, "A New Type of Frequency-Stabilized Gunn Oscillator", Proc. of the IEEE, pp. 1532-1533, October 1971.

- (3) H. Komizo, Y. Ito, H. Ashida and M. Shinoda, "0.5 W CW IMPATT Diode Amplifier For High Capacity 11 GHz FM Radio Relay Equipment", 1972 ISSCC Dig. Tech. Papers, pp. 36-37 February 1972.
- (4) W. J. Gewartowski, "The Effect of Series Resistance on Avalanche (IMPATT) Oscillator Efficiency", Proc. IEEE, vol. 56, No. 6, pp. 1139-1141, June 1968.
- (5) Chang W. Lee and Wei C. Tsai, "High Power GaAs Avalanche Diode Amplifiers", IEEE International Convention, Digest Tech. Papers, pp. 368-369, March 1971.

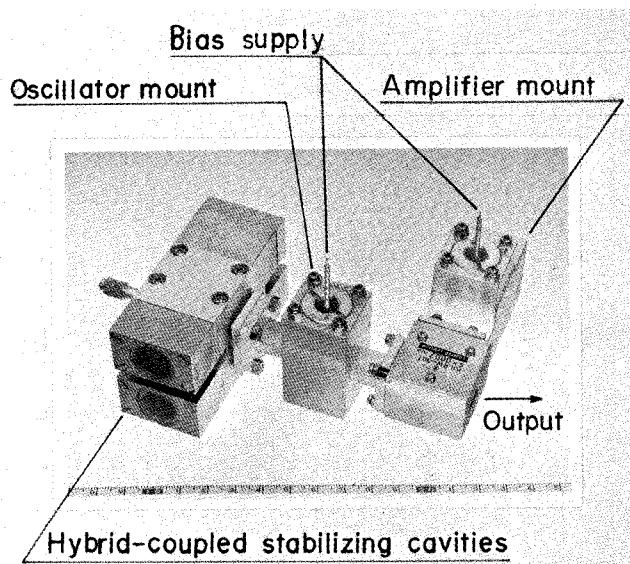


FIG. 1 K-BAND HIGH POWER AND HIGHLY STABLE IMPATT DIODE POWER SOURCE

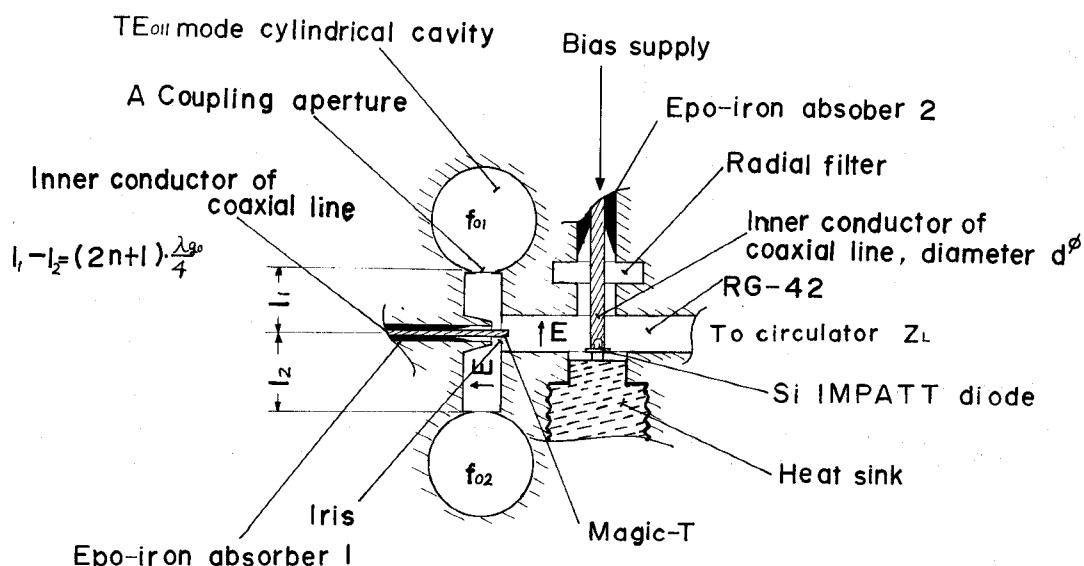


FIG. 2 CROSS SECTIONAL VIEW OF THE CAVITY STABILIZED IMPATT OSCILLATOR STABILIZED BY THE HYBRID-COUPLED CAVITIES

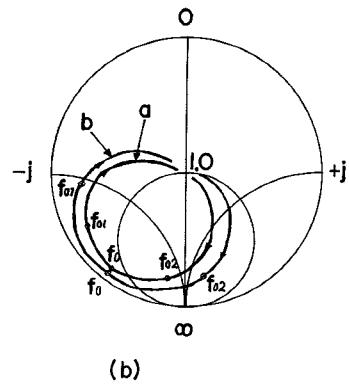
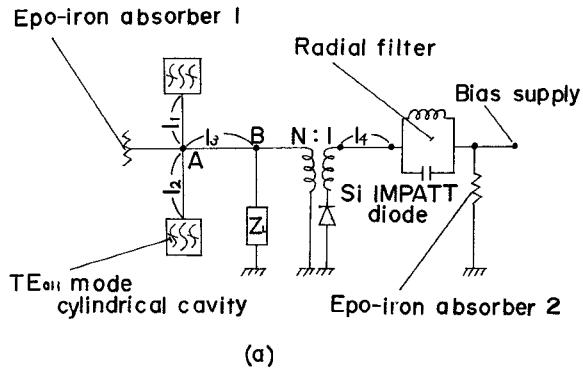



FIG. 3 (a) SIMPLIFIED EQUIVALENT CIRCUIT OF THE STABILIZED OSCILLATOR
 (b) INPUT ADMITTANCE LOCI OF THE HYBRID-COUPLED CAVITIES LOOKING FROM POINT B IN FIG. 3 (a)

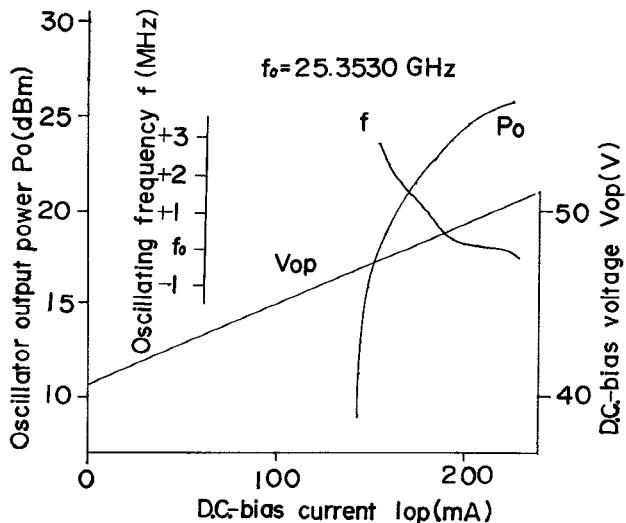


FIG. 4 CHARACTERISTICS OF THE IMPATT OSCILLATOR STABILIZED BY HYBRID-COUPLED CAVITIES

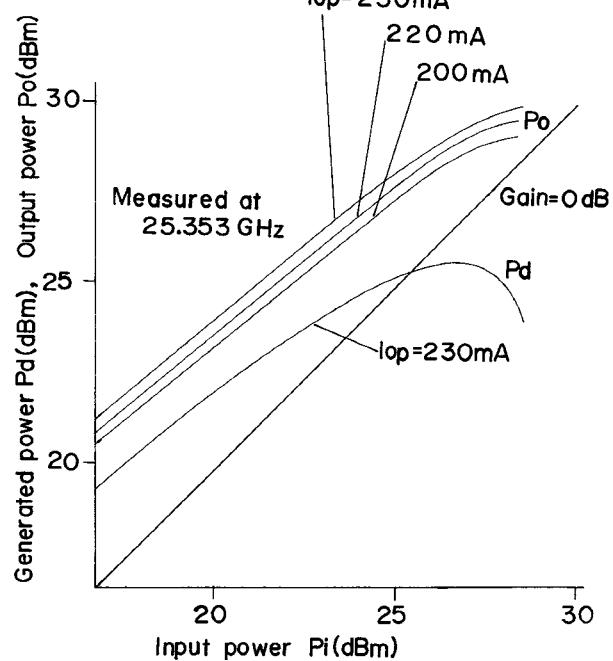


FIG. 5 CHARACTERISTICS OF THE IMPATT REFLECTION TYPE AMPLIFIER

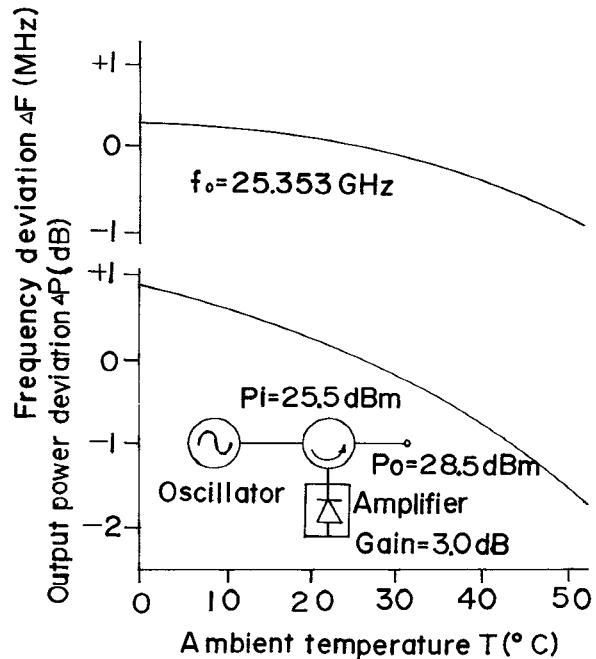


FIG. 6 OVERALL PERFORMANCE AND BLOCK-DIAGRAM OF THE K-BAND IMPATT DIODE POWER SOURCE